第2章液力自动变矩器的结构和工作原理



《第2章液力自动变矩器的结构和工作原理》由会员分享,可在线阅读,更多相关《第2章液力自动变矩器的结构和工作原理(45页珍藏版)》请在文档大全上搜索。
1、宁夏工商职业技术学院第第2章章 液力自动变速器的结构和工作原理液力自动变速器的结构和工作原理学习目标学习目标了解液力耦合器的结构和工作原理了解液力耦合器的结构和工作原理掌握液力变矩器的结构和工作原理掌握液力变矩器的结构和工作原理学会液力变矩器的增距作用原理学会液力变矩器的增距作用原理了解闭锁式液力变矩器的结构及其作用了解闭锁式液力变矩器的结构及其作用液力变矩器液力变矩器液力偶合器液力偶合器只传递转矩但不能改只传递转矩但不能改变转矩,早期的自动变转矩,早期的自动变速器多用变速器多用可传递转矩又能改可传递转矩又能改变转矩变转矩 利用液体在循环流动过程中动能的变化来传递动力的不同型号的液力不同型号的
2、液力变矩器,结构和变矩器,结构和原理相同?原理相同?自动变速器的自动变速器的结构相同吗?结构相同吗?为什么?为什么? 本章主要介绍基本的液力偶本章主要介绍基本的液力偶合器和液力变矩器的结构和工作合器和液力变矩器的结构和工作原理原理2.1 液力耦合器液力耦合器2.1.1 液力耦合器的结构液力耦合器的结构图2-1 液力偶合器结构示意图液力偶合器的结构:由液力偶合器的结构:由壳体、泵轮和涡轮壳体、泵轮和涡轮组成,内部设组成,内部设有导环有导环。传动介质:自动变速器油(传动介质:自动变速器油(ATF)液力偶合器壳体与发动机飞轮相连接,涡轮壳体与发动机飞轮相连接,涡轮与齿轮机构的输入轴相连接。与齿轮机构
3、的输入轴相连接。工作原理:以工作原理:以ATF作为传动介质,作为传动介质,利用液体在主、从动元件之间循利用液体在主、从动元件之间循环流动过程中动能的变化来传递环流动过程中动能的变化来传递动力。动力。能量传递的线路:能量传递的线路:发动机飞轮发动机飞轮液力耦合器外壳液力耦合器外壳泵轮泵轮ATF涡轮涡轮齿轮机构输入轴齿轮机构输入轴2.1.2 液力耦合器的工作原理液力耦合器的工作原理 液力偶合器的液力偶合器的工作原理工作原理 动力传输:将电扇动力传输:将电扇A A与电扇与电扇B B隔开隔开几厘米,相对放置,然后打开电扇几厘米,相对放置,然后打开电扇A A,则则A A会在两电扇间产生流动的空气,由会在
4、两电扇间产生流动的空气,由电扇电扇A A产生的气流冲击电扇产生的气流冲击电扇B B的叶片,使的叶片,使电扇电扇B B转动。转动。 换句话说,电扇换句话说,电扇A A与与B B之间的动力传之间的动力传送是以空气为介质而实现的。偶合器的送是以空气为介质而实现的。偶合器的工作原理也是如此,泵轮相当于电扇工作原理也是如此,泵轮相当于电扇A A,涡轮相当于电扇涡轮相当于电扇B B。只是现在是以变速只是现在是以变速器液为介质,而不是以空气。器液为介质,而不是以空气。2.1.2 液力耦合器的工作原理液力耦合器的工作原理图图2-2 液力偶合器工作示意图液力偶合器工作示意图 由于泵轮和涡轮的半由于泵轮和涡轮的半
5、径相等,故当泵轮的转速径相等,故当泵轮的转速大于涡轮的转速时,泵轮大于涡轮的转速时,泵轮叶片外缘的液压力大于涡叶片外缘的液压力大于涡轮叶片外缘的液压力,于轮叶片外缘的液压力,于是,油液不仅随工作轮绕是,油液不仅随工作轮绕其旋转轴线作圆周运动,其旋转轴线作圆周运动,而且在上述压力差的作用而且在上述压力差的作用下,沿循环圆作如箭头所下,沿循环圆作如箭头所示方向的循环流动。其形示方向的循环流动。其形成的流线如同一个首尾相成的流线如同一个首尾相连的环形螺旋线。连的环形螺旋线。2.1.2 液力耦合器的工作原理液力耦合器的工作原理 当发动机运转时,曲轴带动液力偶合器的壳体和泵轮当发动机运转时,曲轴带动液力
6、偶合器的壳体和泵轮旋转,泵轮叶片内的液压油在泵轮的带动下随泵轮一同旋旋转,泵轮叶片内的液压油在泵轮的带动下随泵轮一同旋转。在离心力的作用下,液压油从泵轮叶片内缘被甩向外转。在离心力的作用下,液压油从泵轮叶片内缘被甩向外缘,并从外缘冲向涡轮叶片,使涡轮在液压油的冲击作用缘,并从外缘冲向涡轮叶片,使涡轮在液压油的冲击作用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮的内缘,被泵轮再次甩向外缘。返回到泵轮的内缘,被泵轮再次甩向外缘。2.1.2 液力耦合器的工作原理液力耦合器的工作原理 液力偶合器实现传动的必要条件:液力偶合器实现传动的必
7、要条件: 油液在泵轮和涡轮之间有循环流动,而循油液在泵轮和涡轮之间有循环流动,而循环流动的产生是由于两个工作轮转速不等,使环流动的产生是由于两个工作轮转速不等,使两轮叶片的外缘处产生液压差所致。两轮叶片的外缘处产生液压差所致。 故液力偶合器在正常工作时,泵轮转速总故液力偶合器在正常工作时,泵轮转速总是大于涡轮转速,如果二者转速相等,则液力是大于涡轮转速,如果二者转速相等,则液力偶合器不会起传动作用。偶合器不会起传动作用。 由于液体在液力偶合器由于液体在液力偶合器中作循环流动时,没有受到中作循环流动时,没有受到其他任何附加外力,故发动其他任何附加外力,故发动机作用在泵轮上的转矩与涡机作用在泵轮上
8、的转矩与涡轮所接受并传给从动轴的转轮所接受并传给从动轴的转矩相等,即液力偶合器不起矩相等,即液力偶合器不起传递转矩的作用,而不改变传递转矩的作用,而不改变转矩大小。转矩大小。2.1.3 液力耦合器的工作效率液力耦合器的工作效率MB=MW 液力偶合器的传动效率等于其转速比。涡轮液力偶合器的传动效率等于其转速比。涡轮与泵轮的转速差越大,转速比越小,传动效率越与泵轮的转速差越大,转速比越小,传动效率越低。反之,转速比越大,传动效率越高。低。反之,转速比越大,传动效率越高。图2-3 液力耦合器的特性曲线0(%)i=1i 理论上说,当涡轮转速等于泵轮转速时,效率为100%。实际上,如涡轮转速等于泵轮转速
9、,则涡轮与泵轮叶片外缘处的液压力相等,从而使得偶合器内的循环流动停止,泵轮与涡轮间不再有能量传递,故传递效率为0.一般而言,液力偶合器的最高效率可达97%左右。 偶合器的缺陷偶合器的缺陷 液体流动的过液体流动的过程如左图所示,程如左图所示,当泵轮的液体冲当泵轮的液体冲击涡轮之后,返击涡轮之后,返回到泵轮,此时回到泵轮,此时液体作用的结果液体作用的结果在阻止泵轮的旋在阻止泵轮的旋转,导致发动机转,导致发动机功率损失。功率损失。泵轮涡轮泵轮问: 液力偶合器能够传递扭矩,但是为何现在没有在自动变速器中采用?阻阻力力液力偶合器的优势与不足液力偶合器的优势与不足优势:优势:1、泵轮和涡轮允许存在转速差,
10、发动机可以在传动系不断、泵轮和涡轮允许存在转速差,发动机可以在传动系不断开时保持运转;开时保持运转;2、ATF作为传动介质,能保证汽车起步和加速的稳定性;作为传动介质,能保证汽车起步和加速的稳定性;3、能够缓冲和衰减传动系的运转振动,防止传动系过载;、能够缓冲和衰减传动系的运转振动,防止传动系过载;不足:不足:液力偶合器只传递转矩,而不能改变转矩的大小。液力偶合器只传递转矩,而不能改变转矩的大小。2.2 液力变矩器液力变矩器2.2.1 液力变矩器的结构液力变矩器的结构图2-4 液力变矩器结构示意图液力变矩器的结构:由壳体、泵轮、涡轮和导轮组成;液力变矩器的结构:由壳体、泵轮、涡轮和导轮组成;液
11、力变矩器液力变矩器和液力偶合器结构上的区别:液力变矩器和液力偶合器结构上的区别:1、泵轮和涡轮叶片的形状设计能将工作液流动的扰、泵轮和涡轮叶片的形状设计能将工作液流动的扰动降到最小,减少能量的损失;动降到最小,减少能量的损失;2、增加了导轮、增加了导轮具有增大转矩的作用。具有增大转矩的作用。结构形式:组装式(可拆)和焊接式(不可拆)结构形式:组装式(可拆)和焊接式(不可拆)。2.2.2 液力变矩器的工作原理液力变矩器的工作原理 泵轮由曲轴驱动,涡轮转泵轮由曲轴驱动,涡轮转轮与变速器输入轴连接,导轮轮与变速器输入轴连接,导轮由单向离合器及定轮轴与变速由单向离合器及定轮轴与变速器壳体固定,所有这些