一次函数与反比例函数的应用题型解析



《一次函数与反比例函数的应用题型解析》由会员分享,可在线阅读,更多相关《一次函数与反比例函数的应用题型解析(14页珍藏版)》请在文档大全上搜索。
1、精选优质文档-倾情为你奉上华师大版八年级下册第17章一次函数与反比例函数应用题专训一、利用图象求解析式试题1、(2015辽宁省朝阳,第23题10分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y
2、关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案考点:一次函数的应用专题:应用题分析:(1)利用待定系数法分别求出当0a4和当a4时,b关于a的函数解析式;(2)由于1x3,则到A公司的运输费用满足b=3a,到B公司的运输费用满足b=5a8,利用总费用=购买铵肥费用+运输费用得到y=750x+3mx+(8x)×700+5(8x)82m,然后进行整理,再利用一次函数的性质确定费用最低的购买方案解答:解:(1)当0a4时,设b=ka,把(4,12)代入得4k=12,解得k=3,所以b=3a;当a4,设b=ma+n,把(4,12),(8,32)代入得,解得,所以b=5a8;
3、(2)1x3,y=750x+3mx+(8x)×700+5(8x)82m=(507m)x+5600+64m,当m时,到A公司买3吨,到B公司买5吨,费用最低;当m时,到A公司买1吨,到B公司买7吨,费用最低点评:本题考查了一次函数的应用:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际;解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数试题2、(2015辽宁省盘锦,第42题14分)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折
4、,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示(1)a=6,b=8;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人? 考点:一次函数的应用分析:(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利
5、用待定系数法求正比例函数解析式求出y1,分x10与x10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50n),然后分0n10与n10两种情况,根据(2)的函数关系式列出方程求解即可解答:解:(1)由y1图象上点(10,480),得到10人的费用为480元,a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,b=×10=8;(2)设y1=k1x,函数图象经过点(0,0)和(10,480),10k1=480,k1=48,y1=48x;0x10时,设y2=k2x,函数图象
6、经过点(0,0)和(10,800),10k2=800,k2=80,y2=80x,x10时,设y2=kx+b,函数图象经过点(10,800)和(20,1440),y2=64x+160;y2=;(3)设A团有n人,则B团的人数为(50n),当0n10时,48n+80(50n)=3040,解得n=30(不符合题意舍去),当n10时,48n+64(50n)+160=3040,解得n=20,则50n=5020=30答:A团有20人,B团有30人故答案为:6,8点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论试
7、题3、(2015齐齐哈尔,第25题8分)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地乙车从B地直达A地,两车同时到达A地甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60千米/时,t=3小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米考点: 一次函数的应用分析: (1)首先根据图示,可得乙车的速度是60千米/时,然后
8、根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t的值是多少即可(2)根据题意,分3种情况:当0x3时;当3x4时;4x7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可(3)根据题意,分3种情况:甲乙两车相遇之前相距120千米;当甲车停留在C地时;两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可解答: 解:(1)
9、根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷6011)=720÷6=120(千米/小时)t=360÷120=3(小时)(2)当0x3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,y=120x(0x3)当3x4时,y=3604x7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得y=120x+840(4x7)(3)(48060120)÷(120+60)+1=300÷180+1=(小时)当甲车停留在C地时,(480360+120)÷60=
10、240÷6=4(小时)两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x120(x1)360=120,所以48060x=120,所以60x=360,解得x=6综上,可得乙车出发后两车相距120千米故答案为:60、3点评: (1)此题主要考查了一次函数的应用问题,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际(2)此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间试题4、(2015吉林,第22题
11、7分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示(1)当4x12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升考点: 一次函数的应用分析: (1)用待定系数法求对应的函数关系式;(2)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解解答: 解:(1)设当4x12时的直线方程为:y=kx+b(k0)图象过(4,20)、(12,30),解得:,y=x+15 (4x12);(2)根据图象,每分钟进水20