1. 首页
  2. 文档大全

复合函数求导法则

上传者:2****5 2022-07-01 21:55:27上传 PPT文件 716.51KB
复合函数求导法则_第1页 复合函数求导法则_第2页 复合函数求导法则_第3页

《复合函数求导法则》由会员分享,可在线阅读,更多相关《复合函数求导法则(33页珍藏版)》请在文档大全上搜索。

1、复合函数求导法则复合函数求导法则先回忆一下一元复合函数的微分法则先回忆一下一元复合函数的微分法则可导可导而而若若)()(xuufy 则复合函数则复合函数 )(xfy 对对 x 的导数为的导数为dxdududydxdy 这一节我们将把这一求导法则推广到多元函这一节我们将把这一求导法则推广到多元函数的情形,主要介绍多元复合函数的微分法和隐数的情形,主要介绍多元复合函数的微分法和隐函数的微分法。我们知道,求偏导数与求一元函函数的微分法。我们知道,求偏导数与求一元函数的导数本质上并没有区别,对一元函数适用的数的导数本质上并没有区别,对一元函数适用的微分法包括复合函数的微分法在内,在多元函数微分法包括复

2、合函数的微分法在内,在多元函数微分法中仍然适用,那么为什么还要介绍多元微分法中仍然适用,那么为什么还要介绍多元复合函数的微分法和隐函数的微分法呢?复合函数的微分法和隐函数的微分法呢?这主要是对于没有具体给出式子的所谓抽象函数这主要是对于没有具体给出式子的所谓抽象函数如如),(22xyyxfz 它是由它是由),(vufz xyvyxu ,22及复合而成的复合而成的由于由于 f 没有具体给出没有具体给出时时在求在求yzxz , 一元复合函数的微分法则就无能为力了,为一元复合函数的微分法则就无能为力了,为此还要介绍多元复合函数的微分法和隐函数的此还要介绍多元复合函数的微分法和隐函数的微分法。微分法。

3、一、链式法则一、链式法则定理如果函数定理如果函数)(tu 及及)(tv 都在点都在点t可可导,函数导,函数),(vufz 在对应点在对应点),(vu具有连续偏具有连续偏导数,则复合函数导数,则复合函数)(),(ttfz 在对应点在对应点t可可导,且其导数可用下列公式计算:导,且其导数可用下列公式计算: dtdvvzdtduuzdtdz 证证,获得增量获得增量设设tt ),()(tttu 则则);()(tttv 由由于于函函数数),(vufz 在在点点),(vu有有连连续续偏偏导导数数,21vuvvzuuzz 当当0 u,0 v时,时,01 ,02 tvtutvvztuuztz 21 当当0 t

4、时,时, 0 u,0 v,dtdutu ,dtdvtv .lim0dtdvvzdtduuztzdtdzt 上定理的结论可推广到中间变量多于两个的情况上定理的结论可推广到中间变量多于两个的情况.如如dtdwwzdtdvvzdtduuzdtdz zuvwt以上公式中的导数以上公式中的导数 称为称为dtdz 上定理还可推广到中间变量不是一元函数上定理还可推广到中间变量不是一元函数而是多元函数的情况:而是多元函数的情况:).,(),(yxyxfz 如果如果),(yxu 及及),(yxv 都在点都在点),(yx具有对具有对x和和y的偏导数,且函数的偏导数,且函数),(vufz 在对应在对应点点),(vu

5、具有连续偏导数,则复合函数具有连续偏导数,则复合函数),(),(yxyxfz 在对应点在对应点),(yx的两个偏的两个偏导数存在,且可用下列公式计算导数存在,且可用下列公式计算 xvvzxuuzxz , yvvzyuuzyz .链式法则如图示链式法则如图示zuvxy xz uzxu vz,xv yz uzyu vz.yv 称为标准法则或称为标准法则或 法法则则22 这个公式的特征:这个公式的特征:函数函数),(),(yxvyxufz 有两个自变量有两个自变量 x 和和 y故法则中包含故法则中包含yzxz ,两个公式;两个公式;由于在复合过程中有两个中间变量由于在复合过程中有两个中间变量 u 和

6、和 v故法则中每一个公式都是两项之和,这两故法则中每一个公式都是两项之和,这两项分别含有项分别含有 vzuz ,每一项的构成与一元复合函数的链导法则类似,每一项的构成与一元复合函数的链导法则类似,即即“函数对中间变量的导数乘以中间变量对函数对中间变量的导数乘以中间变量对自变量的导数自变量的导数”多元复合函数的求导法则简言之即:多元复合函数的求导法则简言之即:“分道相加,连线相乘分道相加,连线相乘” ” 类类似似地地再再推推广广,设设),(yxu 、),(yxv 、),(yxww 都都在在点点),(yx具具有有对对x和和y的的偏偏导导数数,复复合合函函数数),(),(),(yxwyxyxfz 在

7、在对对应应点点),(yx的的两两个个偏偏导导数数存存在在,且且可可用用下下列列公公式式计计算算 xwwzxvvzxuuzxz , ywwzyvvzyuuzyz . zwvuyx特殊地特殊地),(yxufz 其中其中),(yxu 即即,),(yxyxfz 令令, xv , yw , 1 xv, 0 xw, 0 yv. 1 yw,xfxuufxz .yfyuufyz 两者的区别两者的区别把把复复合合函函数数,),(yxyxfz 中中的的y看看作作不不变变而而对对x的的偏偏导导数数 把把),(yxufz 中中的的u及及y看看作作不不变变而而对对x的的偏偏导导数数区别类似区别类似注注 此公式可以推广到

8、任意多个中间变量和任此公式可以推广到任意多个中间变量和任意多个自变量的情形意多个自变量的情形如如),(21muuufz ),(21niixxxuu ), 2 , 1(mi 则则), 2 , 1( ,1njxuuzxzjimiij 从以上推广中我们可以得出:所有公式中从以上推广中我们可以得出:所有公式中两两乘积的项数等于中间变量的个数,而与自两两乘积的项数等于中间变量的个数,而与自变量的个数无关变量的个数无关关于多元复合函数求偏导问题关于多元复合函数求偏导问题这是一项基本技能,要求熟练掌握,尤其是求二这是一项基本技能,要求熟练掌握,尤其是求二阶偏导数,既是重点又是难点。对求导公式不求阶偏导数,既

9、是重点又是难点。对求导公式不求强记,而要切实做到彻底理解。注意以下几点将强记,而要切实做到彻底理解。注意以下几点将会有助于领会和理解公式,在解题时自如地运用会有助于领会和理解公式,在解题时自如地运用公式公式用图示法表示出函数的复合关系用图示法表示出函数的复合关系函数对某个自变量的偏导数的结构函数对某个自变量的偏导数的结构(项数及项的构成)(项数及项的构成) 的结构是求抽象的复合函的结构是求抽象的复合函数的二阶偏导数的关键数的二阶偏导数的关键 ),(),(vufvufvu弄清弄清 ),(),(vufvufvu仍是复合函数仍是复合函数且复合结构与原来的且复合结构与原来的 f ( u , v ) 完


文档来源:https://www.renrendoc.com/paper/212659711.html

文档标签:

下载地址