解析几何与曲面方程.



《解析几何与曲面方程.》由会员分享,可在线阅读,更多相关《解析几何与曲面方程.(32页珍藏版)》请在文档大全上搜索。
1、第一节、第一节、空间解析几何空间解析几何 与曲面方程与曲面方程 1. 空间解析几何简介空间解析几何简介一、空间点的直角坐标一、空间点的直角坐标二、空间两点间的距离二、空间两点间的距离 第六章第六章 x横轴横轴y纵轴纵轴z竖轴竖轴 定点定点o空间直角坐标系空间直角坐标系 三个坐标轴的正方向三个坐标轴的正方向符合符合右手系右手系.即以右手握住即以右手握住z轴,轴,当右手的四个手指当右手的四个手指从正向从正向x轴以轴以2 角角度转向正向度转向正向y轴轴时,大拇指的指向时,大拇指的指向就是就是z轴的正向轴的正向.一、空间点的直角坐标一、空间点的直角坐标机动 目录 上页 下页 返回 结束 xyozxoy
2、面面yoz面面zox面面空间直角坐标系共有空间直角坐标系共有八个卦限八个卦限机动 目录 上页 下页 返回 结束 空间的点空间的点有序数组有序数组),(zyx 11特殊点特殊点(及对称点及对称点)的表示:的表示:)0 , 0 , 0(O),(zyxM xyzo)0 , 0 ,(xP)0 , 0(yQ), 0 , 0(zR)0 ,(yxA), 0(zyB),(zoxC坐标轴上的点坐标轴上的点,P,Q,R坐标面上的点坐标面上的点,A,B,C机动 目录 上页 下页 返回 结束 坐标轴 : 轴x00zy00 xz轴y轴z00yx坐标面 :面yox0 z面zoy0 x面xoz0 y机动 目录 上页 下页
3、返回 结束 xyzo设设),(1111zyxM、),(2222zyxM为为空空间间两两点点xyzo 1MPNQR 2M?21 MMd在在直直角角21NMM 及及 直直 角角PNM1 中中,使使用用勾勾股股定定理理知知,222212NMPNPMd 二、空间两点间的距离二、空间两点间的距离机动 目录 上页 下页 返回 结束 ,121xxPM ,12yyPN ,122zzNM 22221NMPNPMd .21221221221zzyyxxMM 空间两点间距离公式空间两点间距离公式特殊地:若两点分别为特殊地:若两点分别为,),(zyxM)0 , 0 , 0(OOMd .222zyx xyzo 1MPN
4、QR 2M机动 目录 上页 下页 返回 结束 四、二次曲面四、二次曲面五、平面一、曲面方程的概念一、曲面方程的概念二、旋转曲面二、旋转曲面 三、柱面三、柱面机动 目录 上页 下页 返回 结束 2. 曲面及其方程 难点 一、曲面方程的概念求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的222)3()2() 1(zyx07262zyx化简得即说明说明: 动点轨迹为线段 AB 的垂直平分面.引例引例: :显然在此平面上的点的坐标都满足此方程, 不在此平面上的点的坐标不满足此方程.222)4() 1()2(zyx解解: :设轨迹上的动点为, ),(zyxM,BMAM 则轨迹方程. 机动 目
5、录 上页 下页 返回 结束 定义1. 0),(zyxFSzyxo如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系:(1) 曲面 S 上的任意点的坐标都满足此方程;则 F( x, y, z ) = 0 叫做曲面曲面 S 的的方程方程, 曲面 S 叫做方程 F( x, y, z ) = 0 的图形图形.两个基本问题两个基本问题 : :(1) 已知一曲面作为点的几何轨迹时,(2) 不在曲面 S 上的点的坐标不满足此方程,求曲面方程.(2) 已知方程时 , 研究它所表示的几何形状( 必要时需作图 ). 机动 目录 上页 下页 返回 结束 故所求方程为例1. 求动点到定点求动点到定点)
6、,(zyxM),(0000zyxM方程. 特别,当M0在原点时,球面方程为解解: 设轨迹上动点为RMM0即依题意距离为 R 的轨迹xyzoM0M222yxRz表示上(下)球面 .Rzzyyxx202020)()()(2202020)()()(Rzzyyxx2222Rzyx机动 目录 上页 下页 返回 结束 例2. 研究方程研究方程042222yxzyx解解: : 配方得5, )0, 2, 1(0M此方程表示:说明说明: : 如下形式的三元二次方程 ( A 0 )都可通过配方研究它的图形.其图形可能是的曲面. . 表示怎样半径为的球面.0)(222GFzEyDxzyxA球心为 一个球面球面, 或
7、点点 , 或虚轨迹虚轨迹.5)2() 1(222zyx机动 目录 上页 下页 返回 结束 定义定义2. . 一条平面曲线二、旋转曲面 绕其平面上一条定直线定直线旋转一周所形成的曲面叫做旋转曲面旋转曲面.该定直线称为旋转旋转轴轴 . .例如例如 :机动 目录 上页 下页 返回 结束 建立建立yoz面上曲线面上曲线C 绕绕 z 轴旋转所成曲面轴旋转所成曲面的的方程方程:故旋转曲面方程为, ),(zyxM当绕 z 轴旋转时,0),(11zyf,), 0(111CzyM若点给定 yoz 面上曲线 C: ), 0(111zyM),(zyxM1221,yyxzz则有0),(22zyxf则有该点转到0),(
8、zyfozyxC机动 目录 上页 下页 返回 结束 思考:当曲线当曲线 C 绕绕 y 轴旋转时,方程如何?轴旋转时,方程如何?0),(:zyfCoyxz0),(22zxyf机动 目录 上页 下页 返回 结束 例3. 试建立顶点在原点试建立顶点在原点, 旋转轴为旋转轴为z 轴轴, 半顶角为半顶角为的圆锥面方程. 解解: 在yoz面上直线L 的方程为cotyz 绕z 轴旋转时,圆锥面的方程为cot22yxz)(2222yxazcota令xyz两边平方L), 0(zyM机动 目录 上页 下页 返回 结束 xy例4. 求坐标面求坐标面 xoz 上的双曲线上的双曲线12222czax分别绕 x轴和 z