北京邮电大学高等数学9-3

《北京邮电大学高等数学9-3》由会员分享,可在线阅读,更多相关《北京邮电大学高等数学9-3(29页珍藏版)》请在文档大全上搜索。
1、一、问题的提出一、问题的提出把定积分的元素法推广到二重积分的应用中把定积分的元素法推广到二重积分的应用中. . d d dyxf),( dyxf),(),(yx 若要计算的某个量若要计算的某个量U对于闭区域对于闭区域D具有可加性具有可加性(即当闭区域即当闭区域D分成许多小闭区域时,所求量分成许多小闭区域时,所求量U相应相应地分成许多部分量,且地分成许多部分量,且U等于部分量之和等于部分量之和),并且,并且在闭区域在闭区域D内任取一个直径很小的闭区域内任取一个直径很小的闭区域 时,时,相应地部分量可近似地表示为相应地部分量可近似地表示为 的形式,的形式,其中其中 在在 内这个内这个 称为所求量称
2、为所求量U的的元素元素,记为,记为 ,所求量的积分表达式为所求量的积分表达式为 DdyxfU ),(dU实例实例一颗地球的同步轨道通讯一颗地球的同步轨道通讯卫星的轨道位于地球的赤道平面卫星的轨道位于地球的赤道平面内,且可近似认为是圆轨道通内,且可近似认为是圆轨道通讯卫星运行的角速率与地球自转讯卫星运行的角速率与地球自转的角速率相同,即人们看到它在的角速率相同,即人们看到它在天空不动若地球半径取为天空不动若地球半径取为R,问卫星距地面的高度问卫星距地面的高度h应为多少?应为多少?通讯卫星的覆盖面积是多大?通讯卫星的覆盖面积是多大?二、曲面的面积二、曲面的面积卫星卫星hoxz设曲面的方程为:设曲面
3、的方程为:),(yxfz ,Dxoy 面上的投影区域为面上的投影区域为在在,Dd 设小区域设小区域,),( dyx 点点.),(,(的切平面的切平面上过上过为为yxfyxMS .dsdAdAdsszd 则有则有,为为;截切平面;截切平面为为柱面,截曲面柱面,截曲面轴的小轴的小于于边界为准线,母线平行边界为准线,母线平行以以如图,如图, d),(yxMdAxyzs o ,面上的投影面上的投影在在为为xoydAd ,cos dAd,11cos22yxff dffdAyx221,122 DyxdffA 曲面曲面S的面积元素的面积元素曲面面积公式为:曲面面积公式为:dxdyAxyDyzxz 22)()
4、(1设曲面的方程为:设曲面的方程为:),(xzhy 曲面面积公式为:曲面面积公式为: .122dzdxAzxDxyzy 设曲面的方程为:设曲面的方程为:),(zygx 曲面面积公式为:曲面面积公式为: ;122dydzAyzDzxyx 同理可得同理可得例例 1 1 求球面求球面2222azyx ,含在圆柱体,含在圆柱体axyx 22内部的那部分面积内部的那部分面积.由由对对称称性性知知14AA , 1D:axyx 22 曲面方程曲面方程 222yxaz ,于于是是 221yzxz ,222yxaa 解解)0,( yx面面积积dxdyzzADyx 12214 12224Ddxdyyxaa cos
5、0220142ardrrada.4222aa 例例 2 2 求由曲面求由曲面azyx 22和和222yxaz )0( a所围立体的表面积所围立体的表面积.解解解方程组解方程组,22222 yxazazyx得两曲面的交线为圆周得两曲面的交线为圆周,222 azayx在在 平面上的投影域为平面上的投影域为xy,:222ayxDxy 得得由由)(122yxaz ,2axzx ,2ayzy 221yxzz22221 ayax,441222yxaa 知知由由222yxaz 221yxzz, 2dxdyyxaaSxyD 222441故故dxdyxyD 2rdrraada 022204122 a ).155
6、26(62 a),(yx 设设xoy平面上有平面上有n个质点,它们分别位于个质点,它们分别位于),(11yx,),(22yx,,),(nnyx处,质量分别处,质量分别为为nmmm,21则该质点系的则该质点系的重心重心的坐标为的坐标为 niiniiiymxmMMx11, niiniiixmymMMy11三、平面薄片的重心三、平面薄片的重心当薄片是均匀的,重心称为当薄片是均匀的,重心称为形心形心.,1 DxdAx .1 DydAy DdA 其中其中,),(),( DDdyxdyxxx .),(),( DDdyxdyxyy 由元素法由元素法 设设有有一一平平面面薄薄片片,占占有有xoy面面上上的的闭
7、闭区区域域D,在在点点),(yx处处的的面面密密度度为为),(yx ,假假定定),(yx 在在D上上连连续续,平平面面薄薄片片的的重重心心例例 3 3 设平面薄板由设平面薄板由 )cos1()sin(tayttax,)20( t与与x轴围成,它的面密度轴围成,它的面密度1 ,求形心坐标,求形心坐标解解先求区域先求区域 D的面积的面积 A, 20t, ax 20 adxxyA20)( 20)sin()cos1(ttadta 2022)cos1(dtta.32a Da 2a )(xy 所所以以形形心心在在ax 上上,即即 ax , DydxdyAy1 )(0201xyaydydxA adxxya2