第五讲 不确定与非单调推理2



《第五讲 不确定与非单调推理2》由会员分享,可在线阅读,更多相关《第五讲 不确定与非单调推理2(60页珍藏版)》请在文档大全上搜索。
1、第五章 不确定与非单调推理5.1 基本概念5.2 概率方法5.3 主观Bayes方法5.4 可信度方法5.5 证据理论5.6 模糊理论5.7 基于框架表示的不确定性推理5.8 基于语义网络表示的不确定性推理5.9 非单调推理5.6 模糊推理5.6.1 模糊命题含有模糊概念、模糊数据的语句称为模糊命题。它的一般表示形式为:xis A 或者 x is A (CF)其中,A是模糊概念或者模糊数,用相应的模糊集及隶属函数刻画; x是论域上的变量,用以代表所论述对象的属性; CF是该模糊命题的可信度,它既可以是一个确定的数,也可以是一个模糊数或者模糊语言值。模糊语言值是指表示大小、长短、多少等程度的一些
2、词汇。如:极大、很大、相当大、比较大。模糊语言值同样可用模糊集描述。5.6.2 模糊知识的表示(1)模糊产生式规则的一般形式是:IFETHENH(CF,)其中,E是用模糊命题表示的模糊条件;H是用模糊命题表示的模糊结论;CF是知识的可信度因子,它既可以是一个确定的数,也可以是一个模糊数或模糊语言值。是匹配度的阈值,用以指出知识被运用的条件。例如:IFx is A THEN y is B (CF,)(2)推理中所用的证据也用模糊命题表示,一般形式为xisA或者xisA(CF)(3)模糊推理要解决的问题:证据与知识的条件是否匹配:如果匹配,如何利用知识及证据推出结论。5.6.3 模糊匹配与冲突消解
3、在模糊推理中,知识的前提条件中的A与证据中的A不一定完全相同,因此首先必须考虑匹配问题。例如:IF x is 小THENy is 大(0.6) x is 较小两个模糊集或模糊概念的相似程度称为匹配度。常用的计算匹配度的方法主要有贴近度、语义距离及相似度等。1. 贴近度设A与B分别是论域U=u1,u2,un上的两个模糊集,则它们的贴近度定义为:(A,B)= AB+(1-A B) /2其中( )( )( )( )AiBiAiBiUUA BuuABuu 2. 语义距离(1)海明距离(2)欧几里得距离(3)明可夫斯基距离(4)切比雪夫距离匹配度为:1-d(A,B)11( , )|( )( )|1( ,
4、 )|( )( )|nAiBiibABad A Buund A Buuduba211( , )( )( )nAiBiid A Buun111( , )|( )( )| ,1qnqAiBiid A Buuqn1( , )max |( )( )|AiBii nd A Buu 3. 相似度(1) 最大最小法(2) 算术平均法(3) 几何平均最小法11min( ),( )( , )max( ),( )nAiBiinAiBiiuur A Buu11min( ),( )( , )1( )( )2nAiBiinAiBiiuur A Buu11min( ),( )( , )( )( )nAiBiinAiBii
5、uur A Buu(4) 相关系数法(5) 指数法1221111( ) ( )( , )( ) ( ) 11( ),( )nAiABiBinnAiABiBiinnAAiBBiiiuur A Buuuunn1|()()|( , )nAiBiiuur A Be匹配度举例设U=a,b,c,dA=0.3/a+0.4/b+0.6/c+0.8/dA=0.2/a+0.5/b+0.6/c+0.7/d贴近度:AB=(0.30.2)(0.40.5)(0.60.6)(0.80.7)=0.7A B=(0.30.2)(0.40.5)(0.60.6)(0.80.7)=0.3(A,B)=1/2AB+(1-A B)=1/20
6、.7+(1-0.3)=0.7海明距离:d(A,B)=1/4(|0.3-0.2|+|0.4-0.5|+|0.6-0.6|+|0.8-0.7|)=0.075(A,B)=1-d(A,B)=1-0.075=0.925相似度:最大最小法:r(A,B)=(0.30.2)+(0.40.5)+(0.60.6)+(0.80.7)/(0.30.2)+(0.40.5)+(0.60.6)+(0.80.7)=1.9/2.2=0.86(1) 分别计算出每一个子条件与其证据的匹配度例如对复合条件E=x1 is A1 AND x2 is A2 AND x3 is A3及相应证据E:x1 is A1 , x2 is A2 ,
7、x3 is A3分别算出Ai与Ai的匹配度match(Ai,Ai),i=1,2,3。(2) 求出整个前提条件与证据的总匹配度。目前常用的方法有“取极小”和“相乘”等。match(E,E)=minmatch(A1,A1),match(A2,A2), match(A3,A3)match(E,E)=match(A1,A1)match(A2,A2)match(A3,A3)(3) 检查总匹配度是否满足阈值条件,如果满足就可以匹配,否则为不可匹配。复合条件的模糊匹配模糊推理中的冲突消解1. 按匹配度大小排序2. 按加权平均值排序例如,设U=u1,u2,u3,u4,u5,A=0.9/u1+0.6/u2+0.
8、4/u3B=0.6/u2+0.8/u3+0.5/u4C=0.5/u3+0.8/u4+1/u5D=0.8/u1+0.5/u2+0.1/u3并设有如下模糊知识:R1:IFx is A THEN y is H1R2:IFx is B THEN y is H2R3:IFx is C THEN y is H3用户提供的初始证据为:E: x is Dmatch(A,D)=D(u1)/A(u1)+D(u2)/A(u2)+D(u3)/A(u3)=0.8/0.9+0.5/0.6+0.1/0.4同理可得:match(B,D)=0.8/0+0.5/0.6+0.1/0.8match(C,D)=0.8/0+0.5/0+
9、0.1/0.5以上D与A、B、C的匹配度用模糊集形式表示。下面求匹配度的加权平均值:AV(match(A,D)=(0.80.9+0.50.6+0.10.4)/(0.9+0.6+0.4)=0.56同理可得:AV(match(B,D)=0.27AV(match(C,D)=0.1于是得到: AV(match(A,D)AV(match(B,D)AV(match(C,D)所以R1是当前首先被选用的知识。3. 按广义顺序关系排序由上例可得:match(A,D)=D(u1)/A(u1)+D(u2)/A(u2)+D(u3)/A(u3)=0.8/0.9+0.5/0.6+0.1/0.4match(B,D)=0.8
10、/0+0.5/0.6+0.1/0.8match(C,D)=0.8/0+0.5/0+0.1/0.5下面以match(A,D)与match(B,D)为例说明广义顺序排序的方法:首先用match(B,D)的每一项分别与match(A,D)的每一项进行比较。比较时D(ui)与D(uj)中取其小者, A(ui)与B(uj)按如下规则取值:若A(ui)B(uj)则取“1”;若A(ui)0 ,则就认为match(A,D)优于match(B,D) ,记为match(A,D) match(B,D) 。按这种方法,对match(A,D)与match(B,D)可以得到:0.8/1+0.5/1+0.1/1+0.5/1
11、+0.5/1+0.1/0+0.1/1+0.1/0+0.1/0=0.8/1+0.1/0由于1=0.80=0.1,所以得到:match(A,D) match(B,D)同理可得:match(A,D) match(C,D)match(B,D) match(C,D)最后得到:match(A,D) match(B,D)match(C,D) 由此可知R1应该是首先被选用的知识。5.6.4 模糊推理的基本模式1. 模糊假言推理知识:IF x is A THEN y is B证据:x is A-结论:y is B对于复合条件有:知识:IF x1 is A1 AND x2 is A2 ANDAND xn is A